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Proof is given of the convergence of the numerical method of discrete vortices 
(see, e. g., Cl -4])in the solution of real one-dimensional singular integral equa- 
tions of the first kind. It is shown that in the class of functions which are unlimi- 
ted at one end of the integration segment and limited at the other,there exists a 
unique solution for which the Chaplygin - Joukowski condition is satisfied. 

1. Statsmeat of problem. Computotfon sobeme. We consider the 
real one-dimensional singular integral equation (SIE) of the first kind 

b 

s +Y (4 
K (ma 4 
2 _ xo dx = f (4 (1.1) 

i 
with following conditions (conditions A): f (so) satisfies H&lder*s condition [S] with expo- 
nent a,@(u), for a < zO < b; H (z,, 5) satisfies the condition H (cc) with respect to xg and 
z in the region (I B so, x d b; Y (2) is the unknown function to be determined in the 
class of functions which are limited for 5 = b and unlimited for z = a. For x = a func- 
tion y (5) tends to infinity of order Y (0 < Y < 1) and can be, consequently, represented 
in the form y (x) = p (z) (z - a)-“, where a, (5) satisfies the condition H (a) for a < 
2 < b. 

The computation scheme of the considered method consists of dividing segment [a, bf 
into n equal parts of length h on each of which at a distance of l/r h from their left- 
hand end are marked computation points x1 at which values of the sought function y (zi) 
are calculated. At the same distance from the right-hand end are located check points 
.zOf (i, j=l, 2, . . ., n) at which boundary conditions are satisfied. Thus each check point 
%j lies in the middle between adjacent computation points tr and zj+r, except point 
xm which divides segment [z,, bl in a 2 : 1 ratio. 

The numerical method of discrete vortices consists of substituting for the SIE (1.1) of 
a system of n linear algebraic equations 
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h=f(zoj), j- 1,2,. . ., IL (1.2) 

in values of the sought function y (x) determined at computation points xiv with para- 
meter x0 assuming values zOj (i, i = 1, 2, . . ., n). 

It will be shown below that with increasing n solutions of system (1.1) approximate 

those of the SIE (1.1) at points xi. 

2. Exiatrncs and unfqusnorr of solution. Fulfilment of ths 

~h~plygin-Joukowskf condition. With the use of the regularization method 
[5) we represent SIE (1.1) in the form 

b b 

s 

T lx) 
2 dx + 

s 
k (xo, x) T (4 dx - ‘p (50) (2.1) 

a 0 

k (x0, x) -=: 
K (20, 2) -K (so, 20) f fd 

K (x0, x0) 2 cp (w) = K (20, Xi) 

and assume that R (I*, x,,) # o for a < 1 .Q < b (equation of the normal kind).‘ 

For the purpose of solution derivation Eq. (2.1). which for conditions A has a zero in- 

dex, is equivalent to a Fredholm type of equation of the second kind 

For t0 = b we obtain from (2.2) that N (b, 5) = 0 and y (b) = 0. Hence the solution 

of SiE (1-l) which is limited for x = b, must necessarily vanish for x = 6. In problems 
of aerodynamics mathematically defined by SIE (1.1) and conditions A (flow around a 
plate, a lattice of profiles, etc. ) the relationship y (b) = 0 means that the Chaplygin- 
Joukowski postulate is automatically satisfied in the derived solution. 

If in the SIE (1.1) the kernel K (x0, X) s 1, we obtain the Cauchy SIE 
b 

s -gg- ax - f (to) (2.3) 
a 

In this case we obtain from (2.1) and (2.2) that k fz,, ;e) s 0 and N (zo, 5) 3 0 and 
that the unique solution of SIE (1.1) is 

1 
7 (x0) = - - its V- s I,@)) (2.4) 

The change of variable in (2.2) [5] yields a Fredholm integral equation of the second 
kind in which the kernel and the right-hand part are bounded functions. This shows that 
the solution of this equation exists and is unique. Hence Eq. (2.2) and Eq. (1.1). which 
is equivalent to it from the point of view of derivation of solution, have a unique solution. 
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3. Numerical rolution of the Cauchy SIE. For the Cauchy SIE(2.3) 
we form the following system of n linear algebraic equations: 

i _w__hh=f(xoj). i=1,2 ,...b ‘2 

i=l 

(3.1) 

whose determinant is 
Tl 

Atn) = hn 
I-I (%-- zp) (- ?Jm + %p) (xm - 2op) (3.2) 

1<m<p<n m, p=1 

which does not vanish. 
We denote by Ai the determinant which is obtained from Acn) by substituting in it 

the column of right-hand parts of system (3.1) for its i-th column, and by AC; the de- 
terminant which is obtained from A@) by deleting in it the j -th row and the I -th co- 

lumn (i, i = 1, 2, . . . , 4. 
From (3.1) and (3.2) we obtain 

@) 
7 (Xi) = - = - 

A(*) ,k, i 
j-l 

n n 

(- i)i+iAp$ f (x,,J = (3.3) 

n 
2 (- I)j+i jj czi - xop) rr (xrn - ‘09 X 
j=l p=1 m=1 

[*c (Xp - Xi) fi (Xi - Xp) h1 (- Xop + "Oj) i 

p=1 p=i+1 p=j+i (- 'oj + xOp)]-l y 
p=1 

Using the singularity of the disposition of points xi and zoj,( i, j = 1, 2, . . ., n), we 
can transform formula (3.3) to 

h (3.4) 

Using formula 
(P + i) (P + 2) * * . (P + n) 

1.2. . . . en 

known in the theory of gamma-functions [S], for p = I/% and /I = -l/s we obtain 

Pi-(n) = -$ I/ n Y$,” + 0 ([i (n - i + i)]+) $0 ((n - i + i)+i”l*) (3. 5) 

Pj+@) _~J,/zzx 
n _ j + lk + O (Ii tn - i $- ‘)I-“‘) + O (i”’ (n - j + i)““) 

The choice of points zi and xOi (it j = i, 2, . . ., n) implies that 

Hence formulas (3.3). (3.5) and (3.6) yield 
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y (Xi) = - f 
b-X. v-- y-+y+u(i,n-i+q, 
i 

s;_i Fea f(‘Oj) h 

j=l 1/ 
-Xoj Xoj-Zi 

(3.7) 

where a (i, n - i -j- I) tend to zero with infinite increase of i and at - i so that points 

25 lie along segment [a + A, b - 61, where A and 6 are fixed arbitrary positive num- 

bers. Comparing the derived values of ‘Ye (si) in (3*7)with those of ye (q) of the exact 
solution (2.4) of SIE (2.3) at point 5 = q we find that to prove the convergence of 
Y (Eli to ye (q) it is necessary to examine the convergence of the sum sj to thevalue 

of integral If (Q), i = I, 2, . . ., n. 
Since f(x) satisfies condition H(a), and vp the condition H (l/J, we have 

0 n’l’ n - i + -ij- 
[ ( I -“*1* 

) ( 
1+ 

l/n2i++ ’ >I i = 1, 2,. . ., n 

Now, from (3.7) and (3.8) we obtain 

/b 
tT,(‘il-T(‘i) I G&1/ 

-z. 
-qy$ I Alf (zJ I+ a (6, n - i + $1 = 

P-(iv n -i+q 

where b (i, n - i + 1) tends to vanish with infinitely increasing i and n - i + 1 . 

Hence points x lie along segment [af A, b - 61. This proves the following theorem. 
Theorem 1. The values of y (ti) derived from the solution of system (3.1) for all 

points ai lying alog segment [a + A, b - 61, where A and 6 are fixed arbitrary positive 

numbers, ~f~rnly converges to the values obtained in the exact solution of the Cauchy 
SIE at the same points. 

4, Numcrtfoal I;olutlon of ths SIE of the fftrt kind. Let us consider 
the SIE (1.1). We rewrite system (1.2) in the form 

2 _?ZJ.&_ h = 9 (zoj) - i k (“oj, ZJ y (%J h, i = 1, 2, * . 11 n (4.1) 
*=I ‘i p=1 

where k (Q$, zt) and tp (q,J are values of related functions defined in (2.1). 
We solve this system for the known y (q), i = 1, 2, . . ., n. -I’his yields a formula 

similar to (3.4). where instead of f (zOj) appears the right-hand part of formula (4.1). 
Using formulas (3.5). (3.6) and (3.8). we obtain 

b 

y (xi) - $- 
. s N (xi, t) y (t, dt = - f 

b-x. 
---I @.)_tP(i, n-i) xi-a f 1 (4.2) 

(1 

where fi (i, ~2 - i) --A 0 for all points 5i E [a + A, b - S] when )I. -_ 00 . 
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At point zi the exact solution derived from (2.2) is 
h P, 

717 

Comparison of (4.2) and (4.3) shows that Theorem 1 is valid for system (4.1) and the 
SIE (1.1). 

5, Flow around a plate, let us consider, as an example, the flow of a perfect 
incom~essible fluid around a thin plate, We substitute a vortexsheet of intensity 7 (_z) 
for the plate, and obtain for the latter SIE (2.3) in which f (so) = --2n and a = 0, 
b = 1). Its exact solution is 

r,(r) =2 v/(1 -Z)/Z (5.1) 

In conformity with the computation scheme of the method 

zi = h (i - s/h), f0 = h (i - l/4), h =$ i, = 1, 2, . . ** n. (5.2) 

Taking into account (5.2). we obtain for the system of linear equations of the numeri- 
cal method corresponding to SIE (2.3) the following equation 

i i _ ;+ l,2 T (Xi) ‘= 2% j== I, 2,, . ., n,. 

i=l 
(5.3) 

Values of di = y fxi] - Ye (Zi), where y (xi) were obtained from the solution of sys- 
tem (5.3) and yd (xi) by formula (5.1) for n = 20 , are tabulated below. 

Xi-f@ 125 625 1125 1625 2125 2625 3125 
fi.10’ 202.2 7.2 1.7 0.6 0.3 0.1 0.1 
Xi. 10’ 3625 4125 4625 5125 5625 6125 6625 
Ji.102 
.r+.loP 712: 762: 812: 362: 912: 962: 

0 

L1i .102 -0.1 -0.1 -0.1 -0.1 -0.3 -0.9 7: 

It is seen that ye (xi) and Y (xi) diverge significantly only at the first point q = 
0.0125. This should have been expected, since “ye (0) = 00. At that point the relative 
error is 11.345, at the last point zZo it is 2.3%, and at the remaining points it does not 
exceed 1%. 
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Wave phenomena in a one-dimensional boiling bed are considered. A dispersion 
equation is derived which shows that instability in a boiling bed is weak in a fair- 

ly great number of cases. The Korteweg-devries-Burgers equation is obtained 
for waves of small but finite amplitude in the bed. Oscillations at the fronts of 
gas bubbles in a boiling bed are investigated. The linear increase of density fluc- 
tuations with distance from the bed bottom and the jump of fluctuation at the 
upper boundary are explained. 

The mathematical analysis of stability of equations of a boiling bed appeared 

in several publications (see. e. g., [l - 33) in which it is shown that a strong in- 
stability exponentially increasing with time occurs in such beds. However no al- 

lowance was made in these for the boundedness of the bed in space. and the exis- 

tence of homogeneous boiling beds at low fluidization rates is not explained. 
Here the analysis of dispersion and the investigation of wave phenomena in a 

boiling bed is based on expansion in a small parameter introduced in [4], 

The simple model of the boiling bed described in [l] is used for deriving the 
dispersion equation. The pseudo-gas viscosity and the pressure of pseudo-gas in 
particles are neglected, and the viscosity of the fluidizing gas is taken into ac- 
count only in the interaction force between particles and gas. The model is one- 

dimensional, i. e. all functions depend only on the vertical component 5. 

In this case the input equations are of the form 

-g+gL*, -g - & [(I - e) z?] L. 0 

a,=;?. v eHo 
2 z Pf , _ e (v - u) 

where ps and Pf are the densities of particles and gas, respectively ; e is the effective 

volume occupied by particles ; u and v are the velocities of particle and gas, respect- 

ively ; p is the pressure; G is the acceleration of gravity ; Q, is the model force of 
phase interaction ; a is the particle radius ; v is the kinematic viscosity of gas, and Ho. 


